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Abstract. We extend the Golec-Biernat–Wüsthoff model for virtual photon–proton scattering to include
the resolved photon component explicitly. The parameters of the resolved photon component are taken
from the literature, while the parameters of the dipole–nucleon interaction are fitted to the HERA data
in a selected limited range of x and Q2. A good agreement with the experimental data is obtained beyond
the region of the fit.

1 Introduction

The recent decade of investigating deep inelastic scatter-
ing at very small Bjorken variable x at HERA has pro-
vided precise data for the F2 structure function or equiva-
lently for σγ∗p

tot at large center-of-mass energies. Many phe-
nomenological analyses have been performed in order to fit
the data. The theoretical analyses can be divided into two
general classes. One group of models tries to fit the data
using the so-called dipole representation. In this approach,
initiated by Nikolaev and Zakharov [1], one fits parame-
ters of the dipole–nucleon interaction [2–4] as a function
of the transverse quark–antiquark distance. Another group
of models uses rather the momentum representation [5–7].
Still another approach [8] tries to fit the so-called uninte-
grated gluon distributions to the HERA data (see also [9]).

The fits in the dipole representation take into account
only a simple quark–antiquark Fock component of the pho-
ton. However, the higher Fock components seem to be im-
portant to understand the diffraction [10] in detail. The
importance of the higher Fock states is at present not
fully understood. The first theoretical step in going beyond
the qq̄ component has been undertaken only recently [11].
However, no quantitative estimates exist up to now. Only a
very schematic QCD-inspired model was considered in [12].
On the phenomenological side, the jet production in vir-
tual photon–proton scattering, especially at small photon
virtuality, shows clearly the presence of the resolved pho-
ton component (see e.g. [13]) which seems impossible to be
explained with the quark–antiquark component only. The
ratio of the dijet cross section with xOBS

γ < 0.75 (resolved
component) to that with xOBS

γ > 0.75 (direct component)
has been found to increase as Q2 decreases. The variable
xOBS

γ is to be interpreted as the fractional momentum of
the photon taking part in the dijet production. At large

photon virtuality the resolved photon component disap-
pears. The observed Q2 dependence of the resolved pho-
ton component is roughly consistent with the naive VDM
form factor [14]. The present NLO calculations of jet and
dijet production include these phenomenological form fac-
tors when going from real to virtual photons (see e.g. [15]).
Such a phenomenological factor is then prescribed to the
structure of virtual photon, and more precisely to the par-
ton distributions in the virtual photon. It is obvious that
this form factor is of non-perturbative origin and cannot
be derived within pQCD. The resolved photon component
seems also crucial for understanding the world data for
F p

2 (x, Q2) − Fn
2 (x, Q2) [16]. All these arguments put into

question the simple fits to the total photon–nucleon cross
section with the color dipole component alone, and call for
a multi-component parameterization.

In the light of the extremely successful phenomenolog-
ical description in [2] it is interesting to see if any phe-
nomenological two-component model can do a better job.
It is the aim of this note to analyze phenomenologically
if such a two-component model can satisfactorily describe
the HERA data for the photon–proton total cross section.
In our exploratory analysis, the higher Fock components
are parameterized by the standard vector dominance cross
section, i.e. our model is similar in spirit to the Bade�lek–
Kwieciński model [17].

2 Formulation of the model

It is known that the LO total γ∗N cross section in the
so-called dipole or mixed representation can be written in
the form
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σγ∗N
tot = (1)∑

q

∫
dz

∫
d2ρ

∑
T,L

|ΨT,L
γ∗→qq̄(Q, z, ρ)|2 · σ(qq̄)N (x, ρ) .

In this paper we take the so-called quark–antiquark pho-
ton wave function of perturbative form [1]. As usual, in
order to correct the photon wave function for large dipole
sizes (non-perturbative region) we introduce an effective
quark/antiquark mass (meff = m0).

The dipole representation (1) has been used in recent
years to fit the virtual photon–nucleon total cross Sect. [2,
3]. The best fit has been achieved in the saturation model of
Golec-Biernat–Wüsthoff [2]. In their approach the dipole–
nucleon cross section was parameterized as

σ(x, ρ) = σ0

[
1 − exp

(
− ρ2

4R2
0(x)

)]
, (2)

where the Bjorken variable x dependent radius R0 is given
by

R0(x) =
1

1 GeV

(
x

x0

)λ/2

. (3)

Model parameters (normalization constant σ0 and param-
eters x0 and λ) have been determined by the fit to the
inclusive data on F2 for x < 0.01 [2].

In the GBW approach, the dipole–nucleon cross section
is parameterized as a function of the Bjorken variable x.
As discussed in [18], it would be useful to have rather
a parameterization in the gluon longitudinal momentum
fraction xg �= x instead of the Bjorken variable x. Then
one could use the unintegrated gluon distribution which is
related to the dipole–nucleon cross section by

σ(qq̄)N (xg, ρ) (4)

=
4π
3

∫
d2κt

κ2
t

[1 − exp (iκtρ)] αsF
(
xg, κ

2
t

)

=
4π2

3

∫
dκ2

t

κ2
t

[1 − J0 (κtρ)] αsF
(
xg, κ

2
t

)
.

Having xg instead of the Bjorken variable x better re-
flects the kinematics of the process and is consistent with
the standard approach to photon–gluon fusion. Therefore,
we find it more appropriate to parameterize the dipole–
nucleon cross section as xg instead of the Bjorken variable
x. This involves the following replacement in (2):

σ(x, ρ) → σ(xg, ρ) , (5)

which means also a replacement of x by xg in (3). As dis-
cussed in [18], an exact calculation of xg in the dipole rep-
resentation is, however, not possible, and we approximate
xg → (M2

qq +Q2)/(W 2 +Q2), where M2
qq = m2

q/(z(1−z))
with mq being effective quark mass mq = m0 for u/ū
and d/d̄ (anti)quarks and mq = m0 + 0.15 GeV for s/s̄
(anti)quarks. This means that in our approach the dipole–
nucleon cross section σ(qq̄)N = σ(W, Q2, z, ρ). This must

be contrasted to the approach of [2], where there is no z
dependence of σ(qq̄)N .

In practice the parameters of the dipole approach
sketched above are adjusted to describe the experimen-
tal data. In this sense such an approach is effective. In the
pQCD approach, including higher Fock components of the
(virtual) photon, one could write somewhat schematically

σγ∗N
tot =

∑
q

∫
dΩ2 |Ψγ∗→qq̄(ω2)|2 · σ(qq̄)N (ω2)

+
∑

q

∫
dΩ3 |Ψγ∗→qq̄g(ω3)|2 · σ(qq̄g)N (ω3)

+ . . . (6)

The differentials above, dΩ2 and dΩ3, represent phase
space volumes for the qq̄ and qq̄g components, respectively,
and ω2, ω3 represent the corresponding sets of kinemat-
ical variables necessary to describe the relevant process.
The second and all subsequent terms are of the type of
a resolved photon. A rigorous approach to the problem is
rather difficult [11] and has not been pursued numerically.

We shall not try to follow the theoretical path sketched
above. Our aim here is somewhat different. We intend to
construct a simple two-component model. One component
of our phenomenological model is the dipole qq̄ compo-
nent, while the other one is meant to represent the non-
perturbative resolved photon component explicitly. The
standard vector meson approach includes the resolved pro-
cesses explicitly. Trying to keep our model as simple as pos-
sible and inspired by the phenomenological results men-
tioned in the introduction, we wish to check if the stan-
dard vector dominance model (VDM) contribution can
be a reasonable representation (approximation) of the re-
solved photon. Our approach should not be understood as
a replacement of the missing terms in (6). In our opinion,
the VDM contribution under consideration contains non-
perturbative terms which cannot be easily generated by
the formal expansion (6). However, as already mentioned
in the introduction, in many exclusive as well as inclusive
processes the VDM contribution represents phenomeno-
logically the resolved photon fairly well. Summarizing the
discussion above, we think that there are good reasons
to test a simple model in which the total cross section is
divided into the two components:

σγ∗N
tot = σγ∗N

dip + σγ∗N
res,np . (7)

In the following the second term, connected with the non-
perturbative physics of a resolved photon, will be repre-
sented by the classical VDM cross section. A priori, one
could expect some double counting. However, since the
final states in both cases are very different the double
counting is probably small. Therefore we are convinced
that the inclusion of the resolved component explicitly is
well justified. Simulating it with dipole parameters may
provide only an effective description of the data.

The cross section for the VDM component, equivalently
called here the resolved photon component, is calculated
in the standard way:
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σVDM
γ∗N (W, Q2) =

∑
V

4π
γ2

V

M4
V σV N

tot (W )
(Q2 + M2

V )2
· (1 − x) . (8)

We take the simplest diagonal version of VDM with ρ, ω
and φ mesons included. As discussed recently in [19], the
contributions of higher vector states are expected to be
damped. Above the meson–nucleon resonances it is rea-
sonable to approximate

σρN
tot = σωN

tot =
1
2

[
σπ+p

tot + σπ−p
tot

]
, (9)

with a similar expression for σtot
φp [20]. A simple Regge

parameterization of the experimental pion–nucleon cross
section by Donnachie and Landshoff is used [21]. As in
[20], we take the γ calculated from the leptonic decays
of vector mesons, including finite-width corrections. The
factor (1 − x) is meant to extend the VDM contribution
towards larger Bjorken variable x.

3 Fit to the HERA data

In the previous section we presented formulae for the vir-
tual photon–nucleon cross section. The relation between
σγ∗N

tot and F2 is a matter of convention. In the so-called
Hand convention one obtains

σγ∗N
tot (W, Q2) =

4π2αem

Q2(1 − x)

(
1 +

4M2
Nx2

Q2

)
· F2(x, Q2) .

(10)
If the Gilman convention is used instead, then

σγ∗N
tot (W, Q2) =

4π2αem

Q2

√
1 +

4M2
Nx2

Q2 · F2(x, Q2) . (11)

We transform the structure function data from [22] in the
standard but approximate way 1

σγ∗N
tot (W, Q2) =

4π2αem

Q2 · F2(x, Q2) . (12)

Then we perform two independent fits to the HERA data.
In fit 1, only the dipole–nucleon interaction is included
(see (1))

FIT1 : σγ∗N
tot = σγ∗N

dip . (13)

In fit 2 in addition we include the resolved photon com-
ponent in the spirit of the vector meson dominance model
(see (8))

FIT2 : σγ∗N
tot = σγ∗N

dip + σγ∗N
VDM . (14)

In these fits we limit our considerations to 0.15 GeV2 <
Q2 < 10 GeV2. The upper limit is dictated by the simplic-
ity of our model. It is known that at large photon vir-
tualities one has to include QCD evolution [23], which is
ignored in the present analysis for simplicity. The maximal
Bjorken variable x in the data sample included in our fit is

Table 1. Compilation of fit parameters

fit m0 (GeV) σ0 (mb) x0 λ χ2

FIT1 0.10 17.0 9.50e − 4 0.302 8.125
dipole only 0.15 23.5 2.00e − 4 0.268 4.764

0.20 36.0 1.95e − 5 0.235 3.080
FIT2 0.10 7.5 0.0238 0.3160 1.696

dipole + VDM 0.15 8.0 0.0194 0.3107 1.553
0.20 8.0 0.0198 0.3213 1.812
0.30 15.0 1.67e − 3 0.250 1.412
0.40 24.0 2.20e − 4 0.230 1.505
0.60 55.0 1.10e − 5 0.230 4.632

Fig. 1. Two-dimensional maps of χ2 per degree of freedom
for fit 1 (upper panel) and fit 2 (lower panel). Please note a
different range of x0 for fit 1 and fit 2

0.021, and minimal value of W = 17.4 GeV. With the se-
lection criterion specified, we select 159 experimental data
points.

In Table 1 we present the model parameters obtained
from the fit. The region of small Q2 is sensitive to the
value of the effective quark mass. This non-perturbative
parameter is related e.g. to the confinement and cannot be
obtained from the first principles. Therefore, in the table
we show results with different values of this parameter.
From the fit we find σfit1

0 � σfit2
0 for the same value of

the effective quark mass. We have extended the range of
1 Both prescription (10) and (11) converge to the standard

formula below in the limit of small x
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Fig. 2. Quality of fit 1 (qq̄ dipole only); cross sections as a
function of W . Lines and sets of experimental data are marked
by the value of the photon virtuality in GeV2. The HERA data
are taken from [22]

effective quark masses in fit 2 (dipole + VDM). A good
quality fit can be obtained in the broad range of m0. The
χ2 criterion by itself does not allow one to answer the
question which set of parameters is better. The value of
the χ2 per degree of freedom is shown in the last column.
The value of χ2 in fit 2 (dipole + VDM) is smaller than that
in fit 1 (dipole only), which is not acceptable statistically.
This can be taken as evidence for the resolved photon
component.

In order to illustrate how well the model parameters
can be determined from the fit to the experimental data, in
Fig. 1 we show two-dimensional maps of χ2 in both cases.
Here m0 = 0.15 GeV and 0.20 GeV was taken for fit 1 and
fit 2, respectively. Well defined minima are clearly seen.
It can be seen from Table 1 and Fig. 1 that the parame-
ter x0 changes dramatically when the VDM component is
included, while λ stays almost the same.

The quality of the fit can be judged by inspecting
Figs. 2–5. Since there is a rather weak dependence of the
cross section on W , in the figures showing the Q2 depen-
dence both theoretical curves and experimental points are
rescaled by an extra factor 2n, where n counts the subse-
quent subsets of data of a given W shown in Fig. 3 and
5. Only the cross sections for the lowest energy chosen

Fig. 3. Quality of fit 1 (qq̄ dipole only); cross sections as a
function of Q2. The HERA data are taken from [22]

Fig. 4. Quality of fit 2 (qq̄ dipole and VDM); cross sections
as a function of W . Lines and sets of experimental data are
marked by the value of photon virtuality in GeV2. The HERA
data are taken from [22]
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Fig. 5. Quality of fit 2 (qq̄ dipole and VDM); cross sections
as a function of Q2. The HERA data are taken from [22]

(W = 18 GeV) are left unchanged. By careful inspection
of the figures one can see the superiority of fit 2 in the
region of small Q2 and large energies (compare Figs. 3 and
5). However, the description of the data at W ∼ 200 GeV
and Q2 ∼ 1 GeV is somewhat worse (see Fig. 5). The same
is true at Q2 = 1.5 GeV2 and W ∼ 100 GeV (see Fig. 4). In
presenting the results we have made an arbitrary choice of
m0. The results for the other sets of parameters (different
m0) are almost indistinguishable in the range of the fit.
They differ somewhat, however, outside the range of the fit
where no experimental data are available. The theoretical
curves with dipole component only underestimate some-
what the low Q2 data. We wish to stress that the quality
of our fit 1 is worse than that of the original saturation
model of Golec-Biernat–Wüsthoff [2]. We conclude, there-
fore, that parameterizing the dipole–nucleon cross section
as a function of the Bjorken variable x, instead of xg, is
essential for the good quality of the fit in [2].

Having shown that a good quality two-component fit
to the HERA data with a very small number of parameters
is possible, we wish to show a decomposition of the cross
section into the two model components. In Figs. 6 and 7
we show separate contributions of both components as a
function of W and Q2, respectively. While at low energy
the VDM contribution dominates due to the subleading
reggeon exchange, at higher energies they are of compa-
rable size. The VDM contribution, being a higher twist
effect, dominates at small values of photon virtualities. At
larger Q2 the dipole component becomes dominant. This
effect is almost independent of energy.

Up to now we have concentrated on the very low-x
region relevant for DIS at HERA. It is interesting to check
what happens if we go to somewhat larger Bjorken variable

x � 0.05 or correspondingly smaller energies W . In this
region one cannot neglect the valence quark contribution
to the cross section. Then the cross section is a sum of
three components:

σγ∗N
tot

(
W, Q2) =

σγ∗N
dip

(
W, Q2) + σγ∗N

VDM

(
W, Q2) + σγ∗N

val

(
W, Q2) , (15)

where the last component is calculated according to (12)
with

F2(x, Q2) → F̃2(x, Q2) (16)

=
Q2

Q2 + Q2
0

(
4
9
xuval(x, Q2) +

1
9
xdval(x, Q2)

)
.

In order to be able to calculate the quark component at
small Q2 we freeze Q2 below Q2

min = 0.25 GeV2 in the ar-
guments of the quark distributions. In the present calcula-
tion we take the leading order valence quark distributions
from [24]. The Q2 dependent factor in front of the RHS
of (16) is necessary when extrapolating the quark contri-
bution to the non-DIS, low-Q2 region (see e.g. [20]). The
parameter Q2

0 (= 0.8 GeV2) is taken from a global analy-
sis of the experimental data in [20]. In Fig. 8 we compare
predictions of our two models (fits) also with fixed target
data [25,26]. The fixed target data are represented by solid
symbols, while the HERA data by open circles. Formula
(12) is used to calculate both experimental and theoretical
σγp

tot cross sections. In the region of Q2 ∼ 3–5 GeV2, i.e.
for the NMC data, a better agreement is obtained with
model 2 (dipole + VDM). An overestimation of model 2
at small energies and small photon virtualities (the E665
data) may be caused by neglecting a form factor respon-
sible for correcting the VDM contribution for finite times
of hadronic fluctuations [20]. Summarizing, there is phe-
nomenological evidence for the presence of the resolved
photon component from the analysis of experimental data
for F2 in consistency with exclusive reactions.

4 Conclusions

Recent fits to the total γ∗p cross section in the literature
include only the quark–antiquark component in the Fock
decomposition of the photon wave function. The contri-
bution of the higher Fock components, neglected so far,
is not known and difficult to calculate consistently within
quantum chromodynamics. The first trials to include the
qq̄g Fock component within perturbative QCD have not
been quantified in the literature. Non-perturbative effects,
not easy to implement within the framework mentioned,
can also be expected. It is known from the phenomenology
of the inclusive and exclusive reactions that the traditional
vector dominance model in many cases gives a good esti-
mate of the effects characteristic for resolved photon. In
this note we have analyzed if a two-component model,
which includes the qq̄ component and the more compli-
cated components replaced by the standard VDM, can
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Fig. 6. Decomposition of the total γ∗p cross section into dipole (dotted) and VDM (dashed) contributions for 4 different values
of photon virtuality in GeV2

Fig. 7. Decomposition of total γ∗p cross section into contributions dominating at large Q2 dipole (dotted) and dominating at
small Q2 VDM (dashed) for two different energies W
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Fig. 8. Extrapolation of the models towards fixed target data including valence quarks. A solid line represent the sum of
model 1 (left panel) or model 2 (right panel) and valence quark contribution. The dashed lines show model 1 and model 2
separately. The NMC data are shown by solid circles, while the E665 data are pictured by solid triangles. The HERA data
(open circles) are shown for reference. In order to distinguish the data for Q2 = 0.3 GeV2 and Q2 = 0.4 GeV2 we have used
small (Q2 = 0.3 GeV2) and large (Q2 = 0.4 GeV2) symbols, respectively

provide a good description of the HERA data for γ∗p scat-
tering.

In order to quantify the effect of the resolved photon
we have performed two different fits to the HERA data.
In fit 1 we include only the dipole component. Here we
have used the flexible and successful parameterization of
Golec-Biernat and Wüsthoff. In comparison to their fit,
in our fit we parameterize the dipole–nucleon cross sec-
tion in terms of a variable which is closer to the gluon
longitudinal momentum fraction xg than to the Bjorken
variable x. Such a fit is useful on its own, as the corre-
sponding unintegrated gluon distribution can be used to
estimate cross sections for many exclusive processes. In fit
2, in addition we include the VDM component while keep-

ing the same functional form of parameterization for the
dipole–nucleon interaction. At small Q2 and large energies
a better fit is obtained if the resolved photon component
of the type of VDM is included. When going to slightly
larger Bjorken variable, x � 0.05, the model must be sup-
plemented for valence quark contribution. If this is done,
the model describes also the fixed target data quite well.
The two models give different predictions in the regions of
the phase space where no experimental data are available.
Judging from kinematics possible tests could be made by
the HERMES collaboration at HERA and at the Jefferson
laboratory.

Our phenomenological analysis is only a first step to-
wards a better understanding of the role which the higher
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Fock components of the photon play in both inclusive and
exclusive processes. The relation of the phenomenological
VDM contribution to the formal expansion discussed in
this paper requires further study. A numerical calculation
of higher order pQCD effects is called for to start address-
ing this question quantitatively.
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